Welcome back

to CSA29H!

Ed meme recap:

-

'EEIDESY@ WANTED'TO}

PII%NIIW
2

fa

3 -

“. VA "
N 2

Questions on lecture content?
Or about cats?

Quiz everyone say YIPPEE!

Poll

assign raddr1 = quiz;

wire [15:0] feedback = rdata1l;

How was the quiz?

A.

B.
C.
D

easy

mostly fine

mostly fine, but not enough time
too hard, but finished mostly in
time

too hard and not enough time
too hard regardless of time

Stress

e 429H is not an easy class

o Lots of new materials

o Unfamiliar programming environments

o Fast, often relentless pace
e Strugglingin this course is normal

o There will be times you won’t know the answer of the solution

o Thisis expected—we want we everyone to succeed, but the only way we can helpis if you ask for it
e If you find yourself overly overwhelmed or spending more time on this class than

you think you should be, please reach out to Dr. Gheith or the TAs

o Wecan help out as far as the class goes
o We can provide other resources where we are not able to help

Mental health resource available at UT

https://cmhc.utexas.edu/

Another Ed Meme???

how i feel about misalignment #542

Anonymous b g * L0 20
1 hour ago in General STAR WATCH VIEWS

The Verilog code, a beast of a different nature, a creature of pure logic and cold, hard edges, speaks in a
language of modules and wires, of registers and gates, a tongue that is at once precise and unforgiving.
To gaze upon it is to stare into the very heart of the machine, to see the switches flipping and the
electrons flowing in their preordained paths. But lurking within this orderly realm lies a terror that strikes
fear into the hearts of even the most intrepid hardware designers: the specter of misalignment.

Ah, misalignment! That scourge of the digital world, that bane of the programmer's existence. It is a thing
of nightmare, a twisted perversion of the natural order of things. When the program counter, that faithful
guide that leads us through the labyrinthine paths of code, falls victim to misalignment, chaos reigns
supreme.

The once-orderly march of instructions becomes a shambling, lurching thing, a grotesque parody of the
elegant dance it was meant to be. Bytes and words, the very building blocks of our digital universe, are
rent asunder, their boundaries blurred and their meanings distorted. In this mad, misaligned world, the
very foundations of logic and reason begin to crumble, and the hapless programmer is left to pick
through the rubble, desperately seeking some glimmer of sense amidst the chaos.

The specter of misalignment is always waiting, lurking in the shadows, ready to pounce at the slightest
sign of weakness or complacency. It is a constant reminder of the fragility of our pipe-dream world, of the
precariousness of the order we have imposed upon the chaos.

Comment Edit Delete Endorse ==

Quiz Review 2: Electric Boogaloo

o |
N

N

do_branch

is_js

reglaaal

reg[bbtﬁ |

o |
N

N

Final Project

Final Project Info!

work in groups of up to four people
- presentations will be April 25th and April 26th

- presentation scheduling is up to y'all to organize
- project final submission will be due April 29
- anything architecture related
- extend a project we already did
- something completely new
- aproject proposal will be due probably April 15
- whoisinthegroup
- what are the mainideas/goals for the project
- what research have you done

- form groups + ideas now

What we are looking for in presentation

- Beprepared!!
- Have a backup plan if your live demo doesn’t work
- Explain your work

- Provide background that is appropriate for CS429H students
- ldeally people will learn something about architecture from your presentation!

- Demonstrate what you did
- Show screenshots of results, live demos, whatever is appropriate for your project

Final Project Ideas !!!

- We have posted a long list of project ideas on Ed
- Note: We have 2 FPGAs (maybe more) so please let us know early if you'll want
one!

P8

Poll

How’s your status on P8?

What's P8?

I've heard of it

I’'ve cloned the starter code
and/or looked through it

I've started planning/writing
code

I’m mostly done but might still
have bugs

P8 any% speedrun

Out of Order Execution

Order of Out

e whatis Tomasulo’s Algorithm?

Order of Out

e whatis Tomasulo’s Algorithm?
e whatisregister renaming?
o whydowe do this?
e whatisthe common data bus?
e whatis areservation station?
o whatdataisstored in areservation station?

e whatisthereorder buffer?
o whatdatais stored in each entry within the reorder buffer?

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

0

reservation stations

cycle number: 0

1:
2:

L

=

LSU
20 cycles

inst:
cycle done:

FXU
2 cycles

inst:
cycle done:

FXU

2 cycles

inst:
cycle done:

(HT)oO

common data bus

assume you can decode and issue two instructions to either

a FUoraRS in one cycle

reorder buffer
inst valid result
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

instructions:

re — 123

r2 « M[ré]

ri <« 42

ro <« rl1 + r3

ri <« r2 + r3

ri « r3 + r4

r7 —« M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

0

0

reservation stations

cycle number: 1

I I I
1: (1) r2 < M[?0] 1: 1:
2: 2: 2:
[[[
LSU FXU FXU
20 cycles 2 cycles 2 cycles
inst: inst: 0 inst:
cycle done: cycle done: 3 cycle done:

meo

(H)2

reorder buffer

inst valid

result

6 — 123 0

r2 — M[r6] 0

common data bus

assume you can decode and issue two instructions to either

a FUoraRS in one cycle

instructions:
re — 123

r2
ri
ro
ri
ri
r7

< M[r6]
— 42

< r1 + r3
- r2 + r3
~r3 +r4
« M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

1

2

reservation stations

cycle number: 2

I I I
1: (1) r2 < M[?0] 1:(3)r0 < 72+ #0 1:
2: 2: 2:

[[[

LSU FXU FXU
20 cycles 2 cycles 2 cycles
inst: inst: 0 inst: 2
cycle done: cycle done: 3 cycle done: 4

common data bus

assume you can decode and issue two instructions to either
a FUoraRS in one cycle

reorder buffer
inst valid result
mo M «— 123 0
1 12 « M[r6] 0
2 M «—42 0
3 0«—r1+r3 0
(H)4 0
5 0
6 0
7 0
instructions:
re —« 123
r2 « M[re6]
ri — 42
ro - rl + r3
ri <« r2 + r3
ri « r3 + r4
r7 —« M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

1

5

reservation stations

cycle number: 3

I I I
1: (1) r2 < M[?0] 1:(3)r0 < 72+ #0 1:
2: 2: (4)r1<?1+#0 2:
[[[
LSU FXU FXU
20 cycles 2 cycles 2 cycles
inst: 1 inst: 5 inst: 2
cycle done: 23 cycle done: 5 cycle done: 4

common data bus

assume you can decode and issue two instructions to either

a FUoraRS in one cycle

reorder buffer
inst valid result
mo 6 — 123 1 123
1 12 « M[r6] 0
2 M «—42 0
3 0«—r1+r3 0
4 rM«r2+r3 0
5 M—r3+r4 0
(H)6 0
7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 —« M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

1

5

reservation stations

cycle number: 4

123

I I I
1: (6) r7 < M[?5] 1: 1:
2: 2: (4)r1<?1+#0 2:
[[[
LSU FXU FXU
20 cycles 2 cycles 2 cycles
inst: 1 inst: 5,3 inst:
cycle done: 23 cycledone: 5,6 cycle done:

common data bus

assume you can decode and issue two instructions to either

a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
m1 12 « M[r6] 0
2 M—42 1 42
3 0«—r1+r3 0
4 rM«r2+r3 0
5 M—r3+r4 0
6 17 — M[r1] 0
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

1

5

reservation stations

cycle number: 5

123

=

cycle done: 23,25

1: 1:
2: 2: (4)r1<?1+#0
I I
LSU FXU
20 cycles 2 cycles
inst: 1,6 inst: 3

cycle done: 6

FXU

2 cycles

inst:
cycle done:

common data bus

assume you can decode and issue two instructions to either

a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
m1 12 « M[r6] 0
2 M—42 1 42
3 0«—r1+r3 0
4 rM«r2+r3 0
5 rM<—r3+r4 1 0
6 17 — M[r1] 0
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

1

5

reservation stations

cycle number: 6

123

1-
2:(4)rl«?1+#0

=

1:
2:
I
LSU
20 cycles
inst: 1,6

cycle done: 23,25

FXU
2 cycles

inst:
cycle done:

FXU

2 cycles

inst:
cycle done:

common data bus

assume you can decode and issue two instructions to either

a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
m1 12 « M[r6] 0
2 M—42 1 42
3 0«—r1+r3 1 42
4 rM«r2+r3 0
5 rM<—r3+r4 1 0
6 17 — M[r1] 0
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

1

5

reservation stations

cycle number: 7

123

1-
2:(4)rl«?1+#0

=

1:
2:
I
LSU
20 cycles
inst: 1,6

cycle done: 23,25

FXU
2 cycles

inst:
cycle done:

FXU

2 cycles

inst:
cycle done:

common data bus

assume you can decode and issue two instructions to either

a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
m1 12 « M[r6] 0
2 M—42 1 42
3 0«—r1+r3 1 42
4 rM«r2+r3 0
5 rM<—r3+r4 1 0
6 17 — M[r1] 0
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

1

5

reservation stations

cycle number: 8

123

1-
2:(4)rl«?1+#0

=

1:
2:
I
LSU
20 cycles
inst: 1,6

cycle done: 23,25

FXU
2 cycles

inst:
cycle done:

FXU

2 cycles

inst:
cycle done:

common data bus

assume you can decode and issue two instructions to either

a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
m1 12 « M[r6] 0
2 M—42 1 42
3 0«—r1+r3 1 42
4 rM«r2+r3 0
5 rM<—r3+r4 1 0
6 17 — M[r1] 0
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

1

5

reservation stations

cycle number: 23

123

L

1:
2:
I
LSU
20 cycles
inst: 6

cycle done: 25

FXU
2 cycles

inst: 4
cycle done: 25

1:
2:
[
FXU
2 cycles
inst:
cycle done:

common data bus

assume you can decode and issue two instructions to either
a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
m1 r2 — M[ré] 1 456
2 M—42 1 42
3 0«—r1+r3 1 42
4 rM«r2+r3 0
5 rM<—r3+r4 1 0
6 17 — M[r1] 0
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

0

1

5

reservation stations

cycle number: 23

456

123

L

1:
2:
I
LSU
20 cycles
inst: 6

cycle done: 25

FXU
2 cycles

inst: 4
cycle done: 25

1:
2:
[
FXU
2 cycles
inst:
cycle done:

common data bus

assume you can decode and issue two instructions to either
a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
1 0
(M2 M 42 1 42
3 0«—r1+r3 1 42
4 rM«r2+r3 0
5 M—r3+r4 1 0
6 17 — M[r1] 0
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

0

1

3

42

1

5

reservation stations

cycle number: 24

456

123

L

1:
2:
I
LSU
20 cycles
inst: 6

cycle done: 25

FXU
2 cycles

inst: 4
cycle done: 25

1:
2:
[
FXU
2 cycles
inst:
cycle done:

common data bus

assume you can decode and issue two instructions to either
a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
1 0
2 0
(ms3 0«—r1+r3 1 42
4 rM«r2+r3 0
5 rM<—r3+r4 1 0
6 17 — M[r1] 0
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

42

0

42

1

reservation stations

cycle number: 25

456

123

L

1:
2:
[
LSU
20 cycles
inst:
cycle done:

FXU
2 cycles

inst:
cycle done:

1:
2:
[
FXU
2 cycles
inst:
cycle done:

reorder buffer

inst valid

result

0

0

common data bus

assume you can decode and issue two instructions to either
a FUoraRS in one cycle

H) 7

rM«—r2+r3 1

456

M«—r3+r4 1

17 — M[r1] 1

789

instructions:
re « 123

r2
ri
ro
ri
ri
r7

< M[r6]
—r1l + r3
—r2 + r3
< r3 +r4
« M[r1]

Out of Order Processor

ro

r

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

42

0

456

1

reservation stations

cycle number: 26

456

123

L

1:
2:
[
LSU
20 cycles
inst:
cycle done:

FXU
2 cycles

inst:
cycle done:

1:
2:
[
FXU
2 cycles
inst:
cycle done:

common data bus

assume you can decode and issue two instructions to either
a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
1 0
2 0
3 0
4 0
(M5 M «r3+r4 1 0
6 17 — M[r1] 1 789
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r1

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

42

0

0

0

reservation stations

cycle number: 27

456

123

1:
2:

L

=

LSU
20 cycles

inst:
cycle done:

FXU
2 cycles

inst:
cycle done:

FXU

2 cycles

inst:
cycle done:

common data bus

assume you can decode and issue two instructions to either
a FUoraRS in one cycle

reorder buffer
inst valid result
0 0
1 0
2 0
3 0
4 0
5 0
(T) 6 17 — M[r1] 1 789
H)7 0
instructions:
re — 123
r2 « M[ré]
ri — 42
ro - rl + r3
ri « r2 + r3
ri « r3 + r4
r7 « M[r1]

Out of Order Processor

ro

r1

r2

r3

r4

r5

ré

r7

register file

value

busy

owner

42

0

0

0

reservation stations

cycle number: 28

456

123

789

1:
2:

L

=

LSU
20 cycles

inst:
cycle done:

FXU
2 cycles

inst:
cycle done:

FXU

2 cycles

inst:
cycle done:

reorder buffer

common data bus

assume you can decode and issue two instructions to either

a FUoraRS in one cycle

inst valid result
0 0
1 0
2 0
3 0
4 0
5 0
6 0
HT7 0

instructions:

ré 123

r2 M[r6]

ri 42

ro ri + r3

ri r2 + r3

ri r3 + r4

r7 M[r1]

Questions?

000088558558S8$S8S0000
0058888558588585885888858S0

0088888885888 SSSSSSSSSSS888SSSSo oS SS oS
o $ oo 05885555 SSSSSSSSSSSSSSSSSSSSSSSS8S8SSSSo $$ $$ So
00 $$"S 08S8SSSSSSS $SSSSSSSSSSSS SERRRISS N $8$808%0$

"$8$8$S%08 0$8888888$ $§$8$858888$ $3885888SS0 $$8$8$8S
§$888S8$ $§$8$858888$ $§$8$858888$ $385888858585858888888S
$S83888888585858888888S $$858888888SS $$835888888888S " "8S8S

1888888858585 8888585858588588558585858858855858888888 "8
888 0883858555555858555855585585555555858858888858888888 "$$So
088" $$$ $$So
$$$ 888585585858585558558555555585885858885888888" "$8888S00000888S0
038838000083838S 53883555585 855558555555585885888888888S o$$$$$$$$$$$$$$$$$
$$$$$$$$ 8888 $S88585S858588888858585888888888888S §88s"
$$$$ "3888885585858585888888588888 0S
"$8So " S88888858585888888"8S $S$$
$$So "$8" 88888 0$S$
SSSo 0$8S$8"
"8S0 03$38$%0"3%0 0$$8$
"$$8$S00 ""388508838880 0888S""
""8888S0000 "$850888888888" "
""8$38388800 $8388388S8S
" 88888S8SS8SSS
$$858888888S
$$85888888
SR

