
Welcome back
to CSA29H!

Week A

Ed meme recap:

Questions on lecture content?
Or about cats?

Quiz everyone say YIPPEE!

Poll
assign raddr1 = quiz;

wire [15:0] feedback = rdata1;

How was the quiz?

A. easy

B. mostly fine

C. mostly fine, but not enough time

D. too hard, but finished mostly in

time

E. too hard and not enough time

F. too hard regardless of time

Stress
● 429H is not an easy class

○ Lots of new materials
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer of the solution
○ This is expected—we want we everyone to succeed, but the only way we can help is if you ask for it

● If you find yourself overly overwhelmed or spending more time on this class than
you think you should be, please reach out to Dr. Gheith or the TAs

○ We can help out as far as the class goes
○ We can provide other resources where we are not able to help

Mental health resource available at UT

https://cmhc.utexas.edu/

Another Ed Meme???

Quiz Review 2: Electric Boogaloo

1

0

PC Mem

+1

Reg

rdata0

rdata1
raddr0

raddr1

waddr0
wdata0
wen0

waddr1
wdata1
wen1

8 8 8

8
8

8 1

1

3

30..2
3..5

6..6

1

7..7
1

1

0

PC Mem

+1

Reg

raddr0

raddr1

waddr0
wdata0
wen0

waddr1
wdata1
wen1

8 8 8

8
8

8 1

1

3

30..2
3..5

6..6

1

7..7
1

is_js

aaa
bbb

rdata0

rdata1

reg[aaa]

reg[bbb]

do_branch

is_swp

Final Project

Final Project Info!
- work in groups of up to four people
- presentations will be April 25th and April 26th

- presentation scheduling is up to y’all to organize
- project final submission will be due April 29

- anything architecture related
- extend a project we already did
- something completely new

- a project proposal will be due probably April 15
- who is in the group
- what are the main ideas/goals for the project
- what research have you done

- form groups + ideas now

What we are looking for in presentation
- Be prepared!!

- Have a backup plan if your live demo doesn’t work

- Explain your work
- Provide background that is appropriate for CS429H students

- Ideally people will learn something about architecture from your presentation!

- Demonstrate what you did
- Show screenshots of results, live demos, whatever is appropriate for your project

Final Project Ideas !!!
- We have posted a long list of project ideas on Ed

- Note: We have 2 FPGAs (maybe more) so please let us know early if you’ll want

one!

P8

Poll
How’s your status on P8?

A. What’s P8?

B. I’ve heard of it

C. I’ve cloned the starter code

and/or looked through it

D. I’ve started planning/writing

code

E. I’m mostly done but might still

have bugs

F. P8 any% speedrun

Out of Order Execution

Order of Out
● what is Tomasulo’s Algorithm?

Order of Out
● what is Tomasulo’s Algorithm?

● what is register renaming?
○ why do we do this?

● what is the common data bus?

● what is a reservation station?
○ what data is stored in a reservation station?

● what is the reorder buffer?
○ what data is stored in each entry within the reorder buffer?

Out of Order Processor

value busy owner

r0 0 0 -

r1 0 0 -

r2 0 0 -

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 0 0 -

r7 0 0 -

inst valid result

(H, T) 0 - 0 -

1 - 0 -

2 - 0 -

3 - 0 -

4 - 0 -

5 - 0 -

6 - 0 -

7 - 0 -

reorder buffer

register file

1:
2:

1:
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 0

inst:
cycle done:

inst:
cycle done:

inst:
cycle done:

Out of Order Processor

value busy owner

r0 0 0 -

r1 0 0 -

r2 0 1 1

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 0 1 0

r7 0 0 -

inst valid result

(T) 0 r6 ← 123 0 -

1 r2 ← M[r6] 0 -

(H) 2 - 0 -

3 - 0 -

4 - 0 -

5 - 0 -

6 - 0 -

7 - 0 -

reorder buffer

register file

1: (1) r2 ← M[?0]
2:

1:
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 1

inst:
cycle done:

inst: 0
cycle done: 3

inst:
cycle done:

Out of Order Processor

value busy owner

r0 0 1 3

r1 0 1 2

r2 0 1 1

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 0 1 0

r7 0 0 -

inst valid result

(T) 0 r6 ← 123 0 -

1 r2 ← M[r6] 0 -

2 r1 ← 42 0 -

3 r0 ← r1 + r3 0 -

(H) 4 - 0 -

5 - 0 -

6 - 0 -

7 - 0 -

reorder buffer

register file

1: (1) r2 ← M[?0]
2:

1: (3) r0 ← ?2 + #0
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 2

inst:
cycle done:

inst: 0
cycle done: 3

inst: 2
cycle done: 4

Out of Order Processor

value busy owner

r0 0 1 3

r1 0 1 5

r2 0 1 1

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 0 1 0

r7 0 0 -

inst valid result

(T) 0 r6 ← 123 1 123

1 r2 ← M[r6] 0 -

2 r1 ← 42 0 -

3 r0 ← r1 + r3 0 -

4 r1 ← r2 + r3 0 -

5 r1 ← r3 + r4 0 -

(H) 6 - 0 -

7 - 0 -

reorder buffer

register file

1: (1) r2 ← M[?0]
2:

1: (3) r0 ← ?2 + #0
2: (4) r1 ← ?1 + #0

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 3

inst: 1
cycle done: 23

inst: 5
cycle done: 5

inst: 2
cycle done: 4

Out of Order Processor

value busy owner

r0 0 1 3

r1 0 1 5

r2 0 1 1

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

(T) 1 r2 ← M[r6] 0 -

2 r1 ← 42 1 42

3 r0 ← r1 + r3 0 -

4 r1 ← r2 + r3 0 -

5 r1 ← r3 + r4 0 -

6 r7 ← M[r1] 0 -

(H) 7 - 0 -

reorder buffer

register file

1: (6) r7 ← M[?5]
2:

1:
2: (4) r1 ← ?1 + #0

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 4

inst: 1
cycle done: 23

inst: 5, 3
cycle done: 5, 6

inst:
cycle done:

Out of Order Processor

value busy owner

r0 0 1 3

r1 0 1 5

r2 0 1 1

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

(T) 1 r2 ← M[r6] 0 -

2 r1 ← 42 1 42

3 r0 ← r1 + r3 0 -

4 r1 ← r2 + r3 0 -

5 r1 ← r3 + r4 1 0

6 r7 ← M[r1] 0 -

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2: (4) r1 ← ?1 + #0

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 5

inst: 1, 6
cycle done: 23, 25

inst: 3
cycle done: 6

inst:
cycle done:

Out of Order Processor

value busy owner

r0 0 1 3

r1 0 1 5

r2 0 1 1

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

(T) 1 r2 ← M[r6] 0 -

2 r1 ← 42 1 42

3 r0 ← r1 + r3 1 42

4 r1 ← r2 + r3 0 -

5 r1 ← r3 + r4 1 0

6 r7 ← M[r1] 0 -

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2: (4) r1 ← ?1 + #0

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 6

inst: 1, 6
cycle done: 23, 25

inst:
cycle done:

inst:
cycle done:

Out of Order Processor

value busy owner

r0 0 1 3

r1 0 1 5

r2 0 1 1

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

(T) 1 r2 ← M[r6] 0 -

2 r1 ← 42 1 42

3 r0 ← r1 + r3 1 42

4 r1 ← r2 + r3 0 -

5 r1 ← r3 + r4 1 0

6 r7 ← M[r1] 0 -

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2: (4) r1 ← ?1 + #0

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 7

inst: 1, 6
cycle done: 23, 25

inst:
cycle done:

inst:
cycle done:

Out of Order Processor

value busy owner

r0 0 1 3

r1 0 1 5

r2 0 1 1

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

(T) 1 r2 ← M[r6] 0 -

2 r1 ← 42 1 42

3 r0 ← r1 + r3 1 42

4 r1 ← r2 + r3 0 -

5 r1 ← r3 + r4 1 0

6 r7 ← M[r1] 0 -

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2: (4) r1 ← ?1 + #0

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 8

inst: 1, 6
cycle done: 23, 25

inst:
cycle done:

inst:
cycle done:

Out of Order Processor

value busy owner

r0 0 1 3

r1 0 1 5

r2 0 1 1

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

(T) 1 r2 ← M[r6] 1 456

2 r1 ← 42 1 42

3 r0 ← r1 + r3 1 42

4 r1 ← r2 + r3 0 -

5 r1 ← r3 + r4 1 0

6 r7 ← M[r1] 0 -

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 23

inst: 6
cycle done: 25

inst: 4
cycle done: 25

inst:
cycle done:

Out of Order Processor

value busy owner

r0 0 1 3

r1 0 1 5

r2 456 0 -

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

1 - 0 -

(T) 2 r1 ← 42 1 42

3 r0 ← r1 + r3 1 42

4 r1 ← r2 + r3 0 -

5 r1 ← r3 + r4 1 0

6 r7 ← M[r1] 0 -

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 23

inst: 6
cycle done: 25

inst: 4
cycle done: 25

inst:
cycle done:

Out of Order Processor

value busy owner

r0 0 1 3

r1 42 1 5

r2 456 0 -

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

1 - 0 -

2 - 0 -

(T) 3 r0 ← r1 + r3 1 42

4 r1 ← r2 + r3 0 -

5 r1 ← r3 + r4 1 0

6 r7 ← M[r1] 0 -

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 24

inst: 6
cycle done: 25

inst: 4
cycle done: 25

inst:
cycle done:

Out of Order Processor

value busy owner

r0 42 0 -

r1 42 1 5

r2 456 0 -

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

1 - 0 -

2 - 0 -

3 - 0 -

(T) 4 r1 ← r2 + r3 1 456

5 r1 ← r3 + r4 1 0

6 r7 ← M[r1] 1 789

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 25

inst:
cycle done:

inst:
cycle done:

inst:
cycle done:

Out of Order Processor

value busy owner

r0 42 0 -

r1 456 1 5

r2 456 0 -

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

1 - 0 -

2 - 0 -

3 - 0 -

4 - 0 -

(T) 5 r1 ← r3 + r4 1 0

6 r7 ← M[r1] 1 789

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 26

inst:
cycle done:

inst:
cycle done:

inst:
cycle done:

Out of Order Processor

value busy owner

r0 42 0 -

r1 0 0 -

r2 456 0 -

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 0 1 6

inst valid result

 0 - 0 -

1 - 0 -

2 - 0 -

3 - 0 -

4 - 0 -

5 - 0 -

(T) 6 r7 ← M[r1] 1 789

(H) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 27

inst:
cycle done:

inst:
cycle done:

inst:
cycle done:

Out of Order Processor

value busy owner

r0 42 0 -

r1 0 0 -

r2 456 0 -

r3 0 0 -

r4 0 0 -

r5 0 0 -

r6 123 0 -

r7 789 0 -

inst valid result

 0 - 0 -

1 - 0 -

2 - 0 -

3 - 0 -

4 - 0 -

5 - 0 -

6 - 0 -

(H, T) 7 - 0 -

reorder buffer

register file

1:
2:

1:
2:

1:
2:

reservation stations

LSU
20 cycles

FXU
2 cycles

FXU
2 cycles

common data bus instructions:
r6 ← 123
r2 ← M[r6]
r1 ← 42
r0 ← r1 + r3
r1 ← r2 + r3
r1 ← r3 + r4
r7 ← M[r1]

assume you can decode and issue two instructions to either
a FU or a RS in one cycle

cycle number: 28

inst:
cycle done:

inst:
cycle done:

inst:
cycle done:

Questions?

 oooo$$$$$$$$$$$$oooo
 oo$$$$$$$$$$$$$$$$$$$$$$$$o
 oo$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o o$ $$ o$
 o $ oo o$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o $$ $$ $$o$
 oo $ $ "$ o$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$o $$$o$$o$
 "$$$$$$o$ o$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$o $$$$$$$$
 $$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$
 $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$ """$$$
 "$$$""""$$$ "$$$
 $$$ o$$ "$$$o
 o$$" $$$ $$$o
 $$$ $$$" "$$$$$$ooooo$$$$o
 o$$$oooo$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ o$$$$$$$$$$$$$$$$$
 $$$$$$$$"$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$""""""""
 """" $$$$ "$$$$$$$$$$$$$$$$$$$$$$$$$$$$" o$$$
 "$$$o """$$$$$$$$$$$$$$$$$$"$$" $$$
 $$$o "$$""$$$$$$"""" o$$$
 $$$$o o$$$"
 "$$$$o o$$$$$$o"$$$$o o$$$$
 "$$$$$oo ""$$$$o$$$$$o o$$$$""
 ""$$$$$oooo "$$$o$$$$$$$$$"""
 ""$$$$$$$oo $$$$$$$$$$
 """"$$$$$$$$$$$
 $$$$$$$$$$$$
 $$$$$$$$$$"
 "$$$""""

